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Abstract. A broad class of discretizations of the diffusion operator is based on
its first order form, allowing the rigorous enforcement of many desirable physical
properties of the continuous model. In this research we investigate the development
of multilevel solvers for the local or hybrid forms of these discretizations on logically
rectangular quadrilateral meshes. In this case, the local elimination of flux leads to
a system that contains both cell- and edge-based scalar unknowns. Based on this
natural partitioning of the system we develop approximate reduced systems that
reside on a single logically rectangular grid. Each such approximate reduced system,
formed as an approximate Schur complement or as a variational product, are used
as the first coarse-grid in a multigrid hierarchy or as a preconditioner for Krylov
based methods.

1 Introduction

Mixed discretizations for the solution of the diffusion equation, which are
based on the first-order form,

∇ · F = Q(r) (1a)
F = −D(r)∇φ , (1b)

are currently popular because they rigorously enforce important physical
properties, such as mass balance and continuity of normal flux. Examples
of such discretizations include mixed finite element methods (e.g., [5]) and
support operator methods (e.g., [6]). However, the first order form defines a
saddle point problem, and hence, its discretization leads to an indefinite lin-
ear system. In the hybrid or local version of these discretizations (e.g., [3,?]),
it is possible to eliminate the normal flux, locally on each cell, to obtain a
sparse system in the scalar unknowns. Unfortunately, this reduced system
has both cell and edge unknowns; hence, the direct application of existing
robust multigrid algorithms for logically rectangular grids, such as “black box
multigrid” [1], is problematic.

In this work we consider logically rectangular meshes composed of quadri-
laterals. Thus a natural approach to solving these systems is to approximately
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eliminate either edge- or cell-based unknowns to obtain a reduced system on
the corresponding logically rectangular grid. This reduced system may act as
a preconditioner for Krylov based methods, inverted approximately by a sin-
gle V-cycle of a robust multigrid algorithm, or it may be the first coarse-grid
in a multigrid hierarchy.

Specifically, we investigate four possible approximate reduced systems for
the Morel diffusion scheme [3], a support operator method, on uniform paral-
lelogram meshes. In this case this scheme is symmetric positive definite, and
its characteristics are representative of this class of discretizations. In Sect.
2 we provide a brief discussion of the sparsity structure of this scheme and
the definitions of the scalar unknowns. The reduced systems are developed in
Sect. 3. We begin this development, in Sect. 3.1, with a review of the 5-point
approximate Schur complement on the cell-based unknowns that appeared
in [3]. Although, this method is adequate for modestly distorted meshes, it
unfortunately performs poorly for highly skewed meshes.

An alternative to the Schur complement approach is considered in Sect.
3.2, namely the construction of the approximate reduced system through
a variational product. This is motivated by both the mathematical consid-
eration that variational coarsening provides the optimal reduced operator
in the sense that it minimizes the error in the range of the interpolation
[2], and the success of operator-induced variational coarsening in “black box
multigrid”. In the first case, we adopt the the interpolation that arises in
the aforementioned approximate Schur complement to derive a 9-point cell-
based operator. This method is approximately twice as fast as the previous
method, and hence, it still has unacceptably slow convergence highly skewed
meshes. This poor performance, inspired our interest in improved operator-
induced interpolation. Specifically, we consider a larger cell to edge based
interpolation (6-point), which leads to a 25-point cell-based reduced opera-
tor. Similarly, we consider the exact elimination of the cell-based unknowns
followed by the variational product involving a 4-point interpolation, which
leads to a 15-point operator. We demonstrate that these methods exhibit
good convergence, even in the presence of severe skewing.

2 Mixed Discretizations

We consider a (Nx × Ny) logically rectangular grid of quadrilaterals. The
hybrid or local discretization of (1) generates an indefinite linear system
with a favorable sparsity structure. In particular, it is to eliminate the flux
locally on each cell leading to a system for the cell- and edge-based scalar
unknowns. Typically, the cell-based unknowns represent either values of the
scalar φ at a point in the cell or its integral average over the cell. Similarly, the
edge-based unknowns represent either point values of the scalar φ on the edge
or its integral average along the edge. Thus we define the cell-based vector,
φT

h = [. . . , φi,j , . . . ], i = 1, . . . , Nx, j = 1, . . . , Ny, and the edge-based vector
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µT
h = [uT

h ,vT
h ] by uh = [. . . , φi+ 1

2 ,j , . . . ], i = 1, . . . , (Nx + 1), j = 1, . . . , Ny
and vh = [. . . , φi,j+ 1

2
, . . . ] i = 1, . . . , Nx, j = 1, . . . , (Ny + 1). Schematically

the sparsity structure for the Morel diffusion scheme [3] is shown in Fig. 1.

(a) (b) (c)

Fig. 1. Schematic of (a) cell-based, (b) vertical and (c) horizontal edge-based sten-
cils. Dashed lines indicate nonzero connections for a logically rectangular grid.

3 Approximate Reduced Systems

The presence of both cell and edge unknowns generates a natural block par-
titioning of the discrete linear system,

S(φ,µ)

[
µh

φh

]
=

[
Aµµ Aµφ

AT
µφ Aφφ

] [
µh

φh

]
=

[
Qµ

Qφ

]
, (2)

where the edge blocks may be written

Aµµ =
[

Auu Auv

AT
uv Auv

]
Aµφ = [Auφ|Avφ] . (3)

Noting that each type of unknown in [φh,uh,vh] resides on a logically rect-
angular grid, and that the system is sparse motivates the investigation of
reduced systems that may be treated by existing robust multilevel methods.

3.1 A Cell-Based Approximate Schur Complement

The multigrid scheme in [3] is derived as follows: First, an approximate flux
continuity condition for the cell-edges is formed by collapsing the edge-based
stencils to form [Ãµµ|Ãµφ] where Ãµµ is a diagonal approximation and Ãµφ

has consistently modified weights. (see Fig. 2). Therefore, forming the Schur
complement generates a 5-point cell-based reduced operator. This naturally
leads to a multilevel method: employ one relaxation sweep on the full system
(2), solve for corrections to φh with one V-cycle of black box multigrid [1] on
the 5-point cell-based reduced operator, and interpolate these corrections.
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(a) (b)

Fig. 2. Two-point interpolation (a) vertical (b) horizontal edge-based unknowns.

3.2 Variational Coarsening

The popularity of variational coarsening within the multigrid community
arises primarily from its mathematical foundation. Specifically, the varia-
tionally formed reduced operator is optimal in the sense that it minimizes
the error in the range of the interpolation [2]. We form the operator as the
product

Lα = (Iβ
α)T L(α,β)I

β
α . (4)

where L(α,β) is a block system partitioned into the unknowns of type α and
β, Iβ

α is an interpolation operator for the β unknowns in terms of the α
unknowns and Lα is the variational operator on the α unknowns. If the
interpolation Iβ

α is exact, then this variational product generates the Schur
complement. However, if an approximate interpolation is used the variational
product differs significantly from the Schur complement.

A Cell-Based 9-point Operator The approximation to [Aµµ|Aµφ] that is
described in the previous section (Fig. 2) defines an approximate interpolation
operator

Ĩµ
φ =

[−(
Ãµµ

)−1
Ãµφ

Iφ

]
. (5)

A novel implementation of this interpolation introduces fictitious identity
equations for cell-vertex unknowns φi− 1

2 ,j− 1
2
. If the coarse grid unknowns

begin at φ1,1, then the application of “black box” is automatic: the interpo-
lation is given in (5) and the coarse grid operator on the cell-based unknowns
is the operator-induced variational coarse-grid operator. The relaxation on
the finest gird is the same as that employed in [3]; the relaxation on the
coarser grids is alternating red-black line relaxation.

A Cell-Based 25-point Operator The multigrid method based on the
9-point cell-based reduced operator also suffers a deterioration in the conver-
gence factor for highly skewed grids. For parallelogram grids and constant
coefficients, the interpolation (5) is second order accurate and the coarse grid
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operator is optimal. It is natural, therefore, to consider an interpolation with
a bigger stencil. To this end we construct an approximation to the prod-
uct A−1

µµAµφ rather than approximating Aµµ and Aµφ separately. Thus, the
interpolation operator,

Îµ
φ =

[
−

( ̂
Aµµ

)−1
Aµφ

Iφ

]
=

[−Eµφ

Iφ

]
, (6)

is obtained by defining an approximate system of local equations and extract-
ing the necessary column from its inverse. The 7× 7 linear system is created
by considering the exact equation at a particular edge unknown followed by
local approximations to the neighboring equations. The sparsity structure of
the resulting interpolation operator is shown in Fig. 3.

(a) (b)

Fig. 3. Schematic of (a) cell-based, (b) vertical and (c) horizontal edge-based sten-
cils. Dashed lines indicate nonzero connections for a logically rectangular grid.

An Edge-Based 15-point Operator Since the Aφφ is diagonal we may
eliminate φi,j exactly to obtain a sparse system that involves only the edge
unknowns. There are then two sets of equations centered at cell edges,

Sµµh =
[

Buu Buv

AT
uv Bvv

] [
u
v

]
=

[
Q̃u

Q̃v

]
. (7)

We consider the approximate interpolation,

Ĩu
v =

[−(
B̃uu

)−1
Buv

Iφ

]
(8)

where B̃uu is a diagonal approximation of Buu and which is shown in Fig.
4. The variational product, Equation (4), generates an approximate 15-point
operator on the horizontal edges.

4 Linear Solvers

Multilevel methods for reduced systems that are derived as either approxi-
mate Schur complements or variational products are readily developed be-
cause all of the necessary components are present. In contrast defining a
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Fig. 4. Schematic of the edge to edge interpolation.

preconditioner for conjugate gradients follows naturally in the case of the
approximate Schur complement but some care is required in the case of the
variational product. For example, consider the approximations to (2) that
lead to a 5-point cell-based approximate Schur complement and and let rφ

and rµ denote the respective residuals. The preconditioner is

S̃(φ,µ)

[
4µh

4φh

]
=

[
Ãµ,µ Ãµ,φ

Ãµ,φ

T
Aφ,φ

] [
4µ
4φ

]
=

[
rµ

rφ

]
, (9)

with the updates µ → µ +4µ and φ → φ +4φ. Thus,

S̃φ4φ =
(
Aφ,φ − Ãµ,φ

T (
Ãµ,µ

)−1
Ãµ,φ

)
4φ = rφ − Ãµ,φ

T (
Ãµ,µ

)−1
rµ (10)

and 4µ =
(
Ãµ,µ

)−1[
rµ − Ãµ,φ4φ

]
. In contrast, for the 9-point variational

case the approximations are introduced in the interpolation (5) and we want
to generate the corrections 4φ with S̃(v)

φ given by (4). It is not immediately
obvious that this the variational operator can be used in this way, however,
one can show that S̃(v)

φ is the Schur complement of

S(∗)
(φ,µ) =

[
Aµ,µ Aµ,φ

AT
µ,φ A

(∗)
φ,φ

]
(11)

where

A
(∗)
φ,φ = Aφφ +

(
AT

µφA−1
µµ − Ãµφ

T (
Ãµµ

)−1)
Aµµ

(
A−1

µµAµφ −
(
Ãµµ

)−1
Ãµφ

)
which is symmetric, and moreover, S̃(∗)

(φ,µ) > 0 if S(φ,µ) > 0 and Aµµ > 0.

Thus corrections based on S̃(v)
φ are readily defined.

5 Numerical Results

All the numerical results reported here employ a constant diffusion coeffi-
cient, D ≡ 2

11 , on a 49× 49 logically rectangular grid of parallelograms. The
“vertical” edges of the parallelograms are perturbed from the vertical by an
angle θ, yielding challenging problems as θ approaches 90◦. In Table 1 we
report the average convergence factor for ten cycles, computed in terms of



86 J. E. Dendy, Jr. and J. D. Moulton

the discrete L2 norm of the residual. Specifically, we display results for the
four reduced operators that were developed in Sect. 3, with each method
denoted by the number of points in its reduced system. Results for the “5-
point” and “9-point” methods are presented for both V-cycle multigrid and
preconditioned conjugate gradient. For the “15-point” and and “25-point”
the results are for two-grid methods in which the reduced system is solved
with diagonally scaled conjugate gradient.

The edge-based “15-point” system is the least sensitive to θ and provides
the best overall convergence factors. However, the cost of inverting this re-
duced operator is prohibitive. Thus, we are investigating 9-point approxima-
tions to this variationally derived operator that are based on a flux analysis,
as more naive lumping approaches have been found to be inadequate. We also
note that for both the “5-point” and “9-point” reduced systems, the precon-
ditioned conjugate gradient iterations exhibited better convergence factors
with a significantly weaker dependence on θ as it approached 90o than the
corresponding multigrid methods.

Table 1. Convergence Factors, ρ, for various reduced systems

θ 5-pnt. 5-pnt.(PCG) 9-pnt. 9-pnt.(PCG) 25-pnt. 15-pnt.

0◦ 0.04 0.08 0.05 0.05 0.006 0.002
45◦ 0.64 0.66 0.33 0.40 0.06 0.02
60◦ 0.81 0.78 0.57 0.55 0.26 0.07
72◦ 0.93 0.85 0.80 0.74 0.60 0.27
80◦ 0.96 0.85 0.93 0.82 0.66 0.43
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